Critical Care Nutrition: Systematic Reviews March 2021

4.5 Composition of Enteral Nutrition: Strategies for optimizing EN and minimizing risks of EN: Fibre

Question: Do enteral feeds with fibre, compared to standard feeds result in better outcomes in the critically ill adult patient?

Summary of evidence: There were level 1 and 11 level 2 studies reviewed. Five studies looked at the effects of soluble fibres (Spapen 2001, Rushdi 2005: hydrolyzed guar; Hart 1988, Heather 1991: psyllium and Lu 2018: pectin and water soluble fibre from apple and citrus peel), one study (Dobb 1990) examined the effects of a formula containing soy polysaccharide (mainly insoluble fibre), three studies (Karakan 2007, Chittawatanarat 2010, Freedberg 2020) looked at the effects of formulas containing both soluble and insoluble fibres, one study (Schultz 2000) looked at the effects of soluble fibre (pectin) and also compared fibre-containing formula to fibre free formula, one study (Xi 2017) looked at soluble fibre (pectin), and one study compared the use of a fibre-containing formula plus soluble fibre supplementation vs. a fibre-containing formula without additional fibre. supplementation (Majid 2013).

Mortality: When the data from the 6 studies that reported mortality were aggregated, fibre was associated with a trend towards a reduction in mortality (RR 0.54, 95% CI 0.26, 1.12, p=0.10, test for heterogeneity I²=0%; figure 1).

Infections: When the data from the 4 studies that reported infections (Spapen 2001, Karakan 2007, Xi 2017, Freedberg 2020) were aggregated, no differences were found between the 2 groups (RR 0.85, 95% CI 0.48, 1.50, p=0.58, test for heterogeneity I²=50%; figure 2).

Length of Stay: Six studies reported hospital and/or ICU length of stay, however, data from the Schultz 2000 study could not be aggregated since it reported LOS for only its sub-groups and Spapen 2001 and Karakan 2007 did not report this data as mean±SD. When the data from remaining three studies were aggregated, feeds with fibre had no effect on hospital LOS (WMD -4.09, 95% CI -15.24, 7.06, p=0.47, test for heterogeneity I²=51%; figure 3) and a trend towards a reduction in ICU LOS (WMD -4.30, 95CI -9.40, 0.81, p=0.10, test for heterogeneity I²=38%; figure 4).

Ventilator days: Not studied as an outcome

Diarrhea: When the data from the 6 studies reporting on number of patients with diarrhea by group were aggregated, fibre had no effect on diarrhea (RR 0.77, 95% CI 0.50, 1.18, p =0.23, heterogeneity I²=51%; figure 5). Majid 2013 showed no difference in # patients with diarrhea or the # diarrhea days between the two groups. A fewer number of liquid stools (Rushdi 2005) and firmer stool consistency (p=0.03, Freedberg 2020) were reported in the high fibre groups compared to standard feeds.

Nutritional outcomes: High fibre groups met their target energy needs sooner (Chittawatanarat 2010, Xi 2017, Spapen 2001), met a higher % of target energy needs intakes (Lu 2018, Freedberg 2020), were able to receive higher volumes of feeds (Rushdi 2005) and had less feeding intolerance (Lu 2018) compared to the standard formula fed groups.

Conclusions:

- 1) Enteral feeds with fibre compared to standard feeds have no effect on diarrhea
- 2) Enteral feeds with fibre compared to standard feeds may be associated with a trend towards a reduction in mortality and ICU length of stay
- 3) Enteral feeds with fibre compared to standard feeds have no effect on hospital length of stay.

Level 1 study: if all of the following are fulfilled: concealed randomization, blinded outcome adjudication and an intention to treat analysis. **Level 2 study:** If any one of the above characteristics are unfulfilled.

Table 1. Randomized studies evaluating enteral feeds with fibre in critically ill patients

Study	Population	Methods (score)	Intervention	Mortality # (%)† Fibre vs. Control	Infections # (%)‡ Fibre vs. Control
1. Hart 1988	ICU patients N=68	C.Random: not sure ITT: yes Blinding: single (9)	Standard formula (Osmolite HN) + Fybogel vs. Standard formula (Osmolite HN) + placebo	NR	NR
2. Dobb 1990	ICU patients N=91	C.Random: yes ITT: no Blinding: double (10)	Formula with soy polysaccharide (Enrich) vs Standard (Ensure)	NR	NR
3. Heather 1991	ICU CCU, general wards(ICU 41/49) Nutritionally compromised N=49	C.Random: not sure ITT: no Blinding: no (3)	Standard formula (fibre free) + Hydrocil (psyllium) vs. Standard formula (fibre free)	NR	NR
4. Schultz 2000	Critically ill patients receiving antibiotics N=80	C.Random: yes ITT: no Blinding: double (10)	(A) Fibre (Jevity Plus or Nepro) + pectin vs (B) Fibre free (Osmolite, Promote) + pectin vs (C) Fibre (Jevity Plus or Nepro)+ placebo (D) Fibre free (Osmolite, Promote) + placebo	NR	NR
5. Spapen 2001	Patients with severe sepsis, septic shock, ventilated N=35	C.Random: yes ITT: no Blinding: double (11)	Formula with soluble fibre (partially hydrolyzed guar) vs No fibre (standard)	Hospital 1/13 (8) vs. 4/12 (33)	13/13 (100) vs. 12/12 (100)
6. Rushdi 2005	ICU patients N=30	C.Random: yes ITT: no Blinding: double (8)	Standard formula (Sandosource) + soluble Guar gum (Benefibre) vs. Fibre-free formula (Propeptide)	NR	NR
7. Karakan 2007	Patients with severe acute pancreatitis who stopped EN X 48 hrs N=30	C.Random: yes ITT: yes Blinding: double (10)	Standard formula plus a prebiotic multifibre supplement of soluble fibres and insoluble fibres (1.5 gms/100 mls) vs,standard formula alone. Both groups fed via NJ and received peripheral parenteral nutrition	Not specifed 2/15 (13) vs. 4/15 (27)	3/15 (20) vs. 6/15 (40)
8. Chittawatanarat 2010	Surgical ICU, septic patients receiving broad spectrum antibiotics and enteral nutrition N=34	C.Random: no ITT: yes Blinding: double (10)	Standard formula (Nutren fibre), 1.5 gm fibre/L, soluble fibres (FOS, pectin), insoluble fibres (cellulose, lignin, hemicellulose) vs. standard formula without fibre (Nutren Optimum).	Not specifed 1/17 (6) vs. 2/17 (12)	NR

9. Majid 2013	Adult critically ill pts N=47	C.Random: yes ITT: no Blinding: double (10)	Fibre/prebiotic enriched EN formula (Nutrison Multifibre vs. Nutrison protein plus Multifibre – both had 10% oligofructose, 20% inulin, 0.7 g/100ml soluble fibre, 0.8 g/100ml insoluble fibre) + 7 g/d oligofructose/inulin vs same EN formula choices + 7 g/d multidextrin	NR	NR
10. Xi 2017	Adults ICU patients requiring EN N=166	C.Random: yes ITT: no Blinding: no (5)	EN + 6 grams of pectin administered 4h before EN started on days 2 to 6 vs EN only. For both groups: 5% glucose at 25 ml/h started on day 1. EN (Peptisorb) started on day 2, EN advanced to goal slowly with goal to be achieved after day 7. EN given continuously over 20h per day.	30 day 1/62 vs. 3/63	Infectious complication events 7 (11.3%) vs. 9 (14.3%)
11. Lu 2018	Adult ICU patients with brain/spinal cord injury N=28	C.Random: yes ITT: yes Blinding: single (9)	EN with semi solid nutrients (pectin gel and water soluble fibre from apple and citrus peel)l vs. EN. Both groups EN was given intermittently and started within 48-72 hrs	30 day 3/14 (21.4%) vs. 2/14 (14.2%) p =NS	NR
12. Freedberg 2020	Adult Medical ICU patients with sepsis N=22	C.Random: yes ITT: no Blinding: double (9)	EN with 14.3 g/L fibre (Promote 1.0 with Fibre) vs. EN without fibre (Promote 1.0). Both started at same time, similar rates of increase and up to 30 days.	Hospital 2/10 (20%) vs. 4/10 (40%)	Culture proved infections 3/10 (30%) vs. 3/10 (30%); p=NS

Table 1. Randomized studies evaluating enteral feeds with fibre in critically ill patients (continued)

Study		LOS Fibre	days Control		Other
1. Hart 1988	NF			IR	Fybogel Standard # Patients with diarrhea 19/35 (54) 19/33 (58) % Diarrhea days 66/287 (23) 68/297 (23) Mean Volume Received on Day 1 688 ml ± 204 628 ml ± 225 Mean Daily Feeds 1537 ml 1605 ml Total Feeding Days 287 297
2. Dobb 1990	NF	₹	N	IR	Enrich Standard Diarrhea 16/45 (36) 13/46 (28) Mean Volume Received on Day 1 380 ml ± 172 494 ml ± 265
3. Heather 1991	NF	₹	N	IR	Psyllium Standard Stool consistency 3.29 3.29 2.24 Stool frequency 2.26
4. Schultz 2000	(A) ICU 22.1 ± 16.4 Hospital 33.8 ± 22.1	(B) ICU 17.3 ± 8.2 Hospital 22.4 ± 9	(C) ICU 20.7 ± 8.5 Hospital 42.8 ± 3.3	(D) ICU 28 ± 14.6 Hospital 34 ± 14.7	Diarrhea* (A) (B) (C) (D) 1/11 (9) 4/11 (36) 6/11 (55) 1/11 (9) Fibre Intake (g) (A) (C) 174 ± 37.8 190 ± 27.2
5. Spapen 2001	Soluble ICI 19 (11	J	IC	ndard CU 10-30)	Soluble fibre Standard # Patients with diarrhea 6/13 (46) 11/12 (92) % Diarrhea days 16/148 (11) 46/146 (32) Number of feeding days 148 146 Time to reach ptn/kcal goals (days) 5 ± 3 6 ± 3
6. Rushdi 2005	NF	₹	N	IR	Benefibre Standard # Liquid stools - Day 1 1.0 1.2 # Liquid stools - Day 4 1.0 2.1 Feed volumes - Day 1 (ml) 1070 n/a Feed volumes - Day 4 (ml) 1775 1070

	Reported as median	Reported as median	Standard + fibre suppl Standard
7 Karakan 2007	ICU	ICU	Median Duration of EN
7. Karakan 2007	$6 \pm 2 (7)$, P=NS	6 ± 2 (6)	8 ± 4 10 ± 4
	Hospital	Hospital	V = 1
	10 ± 4 (15), P<0.05	15 ± 6 (15)	
	10 = 1 (10), 1 = 0.00	10 = 0 (10)	Nutren Fibre Nutren Optimum
	ICU	ICU	# patients with at least 1 day of diarrhea
8. Chittawatanarat 2010	16.8 ± 8.0 (16)	25.5 ± 13.0 (15)	4/17 (23.5) 8/17 (47)
	Hospital	Hospital	Mean Diarrhea Score
	30.9 ± 28 (16)	36.1 ± 14.8 (15)	3.6 ± 2.3 6.3 ± 3.6
	00.0 ± 20 (10)	00.1 = 14.0 (10)	Day achieved mean kcal intake (1500 kcal)
			Day 6 Day 8
			Oligofructose/Inulin Maltodextrin
0 M-114 0040	NR	NR	Pts w ≥ 1 day of diarrhea
9. Majid 2013			11/12 (92) 9/10 (90); p=NS
			Days of diarrhea
			3.9 + 4.1 3.8 + 3.5; p=NS
			Pectin No Pectin
10. Xi 2017	ICU	ICU	Time to reach full EN (days)
10. Al 2017	13.8 ± 8.59 (62)	17.9 ± 9.72 (63)	9.99 <u>+</u> 1.91 13.0 <u>+</u> 5.12, p=0.05
	Hospital	Hospital	Vomiting
	23.4 ± 13.2 (62)	$32.9 \pm 19.0 (63)$	2 (3.2%) 3 (4.8%), p=0.05
	(*)	(**)	Diarrhea
			7 (11.3%) 16 (25.4%), p <0.001
			Constipation
			2 (3.2%) 7 (11.1%), p <0.001
11. Lu 2018	ICU	ICU	Pectin No Pectin
	20.07 ± 25.71 (14)	14.36 ± 7.59 (14)	3 days caloric intake
	Hospital	Hospital	2589.29 ± 844.02 1685.71 ± 388; p<0.01
	40.64± 40.87 (14)	26.71± 11.73 (14)	Percent prescribed calories received, mean SD
			98% ±6 73% ± 15; p<0.01
			Received target protein, n(%)
			10/14 (71.4%) 9/14 (64%); p=0.5
			Feeding intolerance, n(%)
			2 (14.3) 8(57.1); p=0.046
			Stress hyperglycemia, n(%) 6/11 (54.5) 8/14 (57.1); p=1.00
40 5 11 0000	NR	NR	Fibre No Fibre
12. Freedberg 2020	NK	NK NK	Number of stools/day, median (IQR)
			1 (0.33-3.33) 1.67 (0.67-2.67); p=0.85
			Stool consistency (5 point likert scale with 0 (most liquid) to 5 (hard)
			1.7 (1.1-2.9) 0.8 (0.43-1.2); p=0.03
			Day 3 % energy needs achieved
			58% (24-84) 33% (2-52); p=0.24
			ου /υ (ετοτ) ου /υ (ετοε), ρ-υ.ετ
		ITT. Intend to top of	* Commercial A. D. Oto D. for effect of fibre and/or mostin to place be

C.Random: Concealed randomization

[†] Presumed ICU mortality unless otherwise specified

‡ Refers to the # of patients with infections unless specified** RR= relative risk

ITT: Intent to treat
NR: Not reported
CI: Confidence intervals

^{*} Compared A+B+C to D for effect of fibre and/or pectin to placebo

Figure 1. Mortality

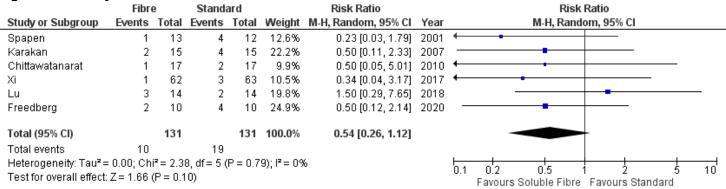


Figure 2. Infections

_	Fibre	е	Conti	rol		Risk Ratio		Risk Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% CI
Spapen	13	13	12	12	49.3%	1.00 [0.86, 1.16]	2001	+
Karakan	3	15	6	15	15.8%	0.50 [0.15, 1.64]	2007	
Xi	7	62	9	63	21.7%	0.79 [0.31, 1.99]	2017	
Freedberg	3	10	3	10	13.3%	1.00 [0.26, 3.81]	2020	
Total (95% CI)		100		100	100.0%	0.85 [0.48, 1.50]		
Total events	26		30					
Heterogeneity: Tau ² =	0.16; Ch	$i^2 = 5.9$	7, df = 3 (P = 0.1	1); $I^2 = 50$	1%		0.1 0.2 0.5 1 2 5 10
Test for overall effect:	Z = 0.55	(P = 0.5)	58)					0.1 0.2 0.5 1 2 5 10 Favours Soluble Fibre Favours Control

Figure 3. Hospital LOS

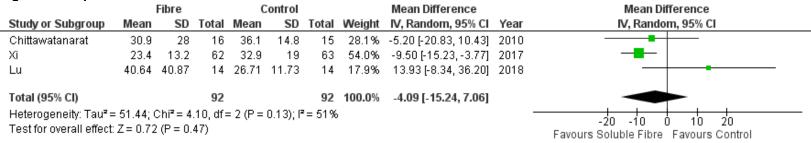


Figure 4. ICU LOS

		Fibre			Control			Mean Difference		Mean Difference	
Study or Subgroup	Mean	SD	Total	Mean	SD	Total	Weight	IV, Random, 95% CI	Year	IV, Random, 95% CI	
Chittawatanarat	16.8	8	16	25.5	13	15	28.5%	-8.70 [-16.36, -1.04]	2010		
Xi	13.8	8.59	62	17.9	9.72	63	60.2%	-4.10 [-7.31, -0.89]	2017		
Lu	20.07	25.71	14	14.36	7.59	14	11.3%	5.71 [-8.33, 19.75]	2018	- •	
Total (95% CI)			92			92	100.0%	-4.30 [-9.40, 0.81]		•	
Heterogeneity: Tau ² : Test for overall effect	•		•	2 (P = 0	i.20); l²	²= 38%	•			-20 -10 0 10 20 Favours Soluble Fibre Favours Control	

Figure 5. Diarrhea

	Fibr	Fibre Standard				Risk Ratio		Risk Ratio			
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% CI	Year	M-H, Random, 95% Cl			
Hart	19	35	19	33	26.5%	0.94 [0.62, 1.44]	1988				
Dobb	16	45	13	46	20.8%	1.26 [0.69, 2.31]	1990	- •			
Schultz	11	33	1	11	4.3%	3.67 [0.53, 25.26]	2000				
Spapen	6	13	11	12	20.6%	0.50 [0.27, 0.93]	2001				
Chittawatanarat	4	17	8	17	12.2%	0.50 [0.18, 1.35]	2010				
Xi	7	62	16	63	15.5%	0.44 [0.20, 1.01]	2017				
Total (95% CI)		205		182	100.0%	0.77 [0.50, 1.18]		•			
Total events	63		68								
Heterogeneity: Tau ² =	-		-	(P = 0.	07); I² = 5	1%		0.1 0.2 0.5 1 2 5 10			
Test for overall effect	. Z = 1.211	(F = 0.2	(3)					Favours fibre Favours standard			

Critical Care Nutrition: Systematic Reviews March 2021

References

Included Studies

- 1. Hart GK, Dobb GJ. Effect of a fecal bulking agent on diarrhea during enteral feeding in the critically ill. JPEN 1988;12(5):465-8.
- Dobb GJ, Towler SC. Diarrhoea during enteral feeding in the critically ill: a comparison of feeds with and without fibre. Intensive Care Med1990;16(4):252-5.
- Heather DJ, Howell L, Montana M, Howell M, Hill R. Effect of a bulk-forming cathartic on diarrhea in tube-fed patients. Heart Lung. 1991;20(4):409-13.
- Schultz AA, Ashby-Hughes B, Taylor R, Gillis DE, Wilkins M. Effects of pectin on diarrhea in critically ill tube-fed patients receiving antibiotics. Am J Crit Care. 2000;9(6):403-11.
- 5. Spapen H, Diltoer M, Van Malderen C, Opdenacker G, Suys E, Huyghens L. Soluble fiber reduces the incidence of diarrhea in septic patients receiving total enteral nutrition: a prospective, double-blind, randomized, and controlled trial. Clin Nutr. 2001;20(4):301-5.
- 6. Rushdi TA, Pichard C, Khater YH. Control of diarrhea by fiber-enriched diet in ICU patients on enteral nutrition: a prospective randomized controlled trial. Clin Nutr. 2004;23(6):1344-52.
- 7. Karakan T, Ergun M, Dogan I, Cindoruk M, Unal S. Comparison of early enteral nutrition in severe acute pancreatitis with prebiotic fiber supplementation versus standard enteral solution: a prospective randomized double-blind study. World J Gastroenterol 2007;13(19):2733-7.
- 8. Chittawatanarat K, Pokawinpudisnun P, Polbhakdee Y. Mixed fibers diet in surgical ICU septic patients. Asia Pac J Clin Nutr. 2010;19(4):458-64. PubMed PMID: 21147705.
- 9. Majid HA, Cole J, Emery PW, Whelan K. Additional oligofructose/inulin does not increase faecal bifidobacteria in critically ill patients receiving enteral nutrition: A randomised controlled trial. Clin Nutr. 2013 Nov 16. (Epub)
- 10. Xi F, Xu X, Tan S, Gao T, Shi J, Kong Y, Yu W, Li J, Li N. Efficacy and safety of pectin-supplemented enteral nutrition in intensive care: a randomized controlled trial. Asia Pac J Clin Nutr. 2017;26(5):798-803.
- 11. Kongmiao, Zeng F, Li Y, Chen C, Huang M. A more physiological feeding process in ICU: Intermittent infusion with semi-solid nutrients (CONSORT-compliant). Medicine (Baltimore). 2018 Sep;97(36):e12173. doi: 10.1097/MD.000000000012173. PMID: 30200118; PMCID: PMC6133414.
- 12. Freedberg DE, Messina M, Lynch E, Tess M, Miracle E, Chong DH, Wahab R, Abrams JA, Wang HH, Munck C. Impact of Fiber-Based Enteral Nutrition on the Gut Microbiome of ICU Patients Receiving Broad-Spectrum Antibiotics: A Randomized Pilot Trial. Crit Care Explor. 2020 Jun 11;2(6):e0135. doi: 10.1097/CCE.00000000000135. PMID: 32695998; PMCID: PMC7314333.

Critical Care Nutrition: Systematic Reviews March 2021

Excluded Studies Reasons

		110400110
1.	Frankenfield DC, Beyer PL. Soy-polysaccharide fiber: effect on diarrhea in tube-fed, head-injured patients. Am J Clin Nutr 1989;50(3):533-8.	Crossover RCT
2.	Borlase BC, Bell SJ, Lewis E, Swails W, Bistrian BR, Forse A, Blackburn GL. Tolerance to enteral tube feeding diets in hypoalbuminemic critically ill, geriatric patients. Surgery, Gyn Obs 1992;174:181-188.	Elective surgery pts
3.	Levinson M, Bryce A. Enteral feeding, gastric colonisation and diarrhoea in the critically ill patient: is there a relationship? Anaesth Intensive Care. 1993 Feb;21(1):85-8.	No clinical outcomes
4.	Homann HH, Kemen M, Fuessenich C, Senkal M, Zumtobel V. Reduction in diarrhea incidence by soluble fiber in patients receiving total or supplemental enteral nutrition. JPEN J Parenter Enteral Nutr 1994;18(6):486-490.	Not ICU pts
5.	Khalil L, Ho KH, Png D, Ong CL. The effect of enteral fibre-containing feeds on stool parameters in the post-surgical period. Singapore Med J. 1998 Apr;39(4):156-9.	Not ICU pts
6.	Rayes N, Hansen S, Seehofer D, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of fiber and Lactobacilli versus conventional nutrition: a controlled trial in patients with major abdominal surgery. Nutrition. 2002 Jul-Aug;18(7-8):609-15.	Elective surgery pts
7.	Rayes N, Seehofer D, Hansen S, Boucsein K, Müller AR, Serke S, Bengmark S, Neuhaus P. Early enteral supply of lactobacillus and fiber versus selective bowel decontamination: a controlled trial in liver transplant recipients. Transplantation. 2002 Jul 15;74(1):123-7.	Elective surgery pts
8.	Homann HH, Senkal M, Kemen M, Lehnhardt M. The beneficial effects of PHGG in enteral nutrition in medical and surgical patients. Clin Nutr Suppl 2004;1:59-62.	Only 30% pts were ICU patients (acc to author)
9.	Yang G, Wu XT, Zhou Y, Wang YL. Application of dietary fiber in clinical enteral nutrition: A meta-analysis of randomized controlled trials.j World J Gastroenteral 2005;11(25):3935-3938.	Meta-analysis, Individual studies looked at
10.	Schneider SM, Girard-Pipau F, Anty R, van der Linde E et al. Effects of total enteral nutrition supplemented with a multi-fibre mix on faecal short-chain fatty acids and microbiota. Clin Nutr 2006;25:82-90.	Crossover study
11.	Plaudis H, Pupelis G, Zeiza K, Boka V. Early low volume oral synbiotic/prebiotic supplemented enteral stimulation of the gut in patients with severe acute pancreatitis: a prospective feasibility study. Acta Chir Belg. 2012 Mar-Apr;112(2):131-8. PubMed PMID: 22571076	Not ICU patients, only 15% ventilated
12.	Jakobsen LH, Wirth R, Smoliner C, Klebach M, Hofman Z, Kondrup J. Gastrointestinal tolerance and plasma status of carotenoids, EPA and DHA with a fiber-enriched tube feed in hospitalized patients initiated on tube nutrition: Randomized controlled trial. Clin Nutr. 2017 Apr;36(2):380-388.	Not critically ill
13.	Tabei I.; Tsuchida S.; Akashi T.; Ookubo K.; Hosoda S.; Furukawa Y.; Tanabe Y.; Tamura Y. Effects of a novel method for enteral nutrition infusion involving a viscosity-regulating pectin solution: A multicenter randomized controlled trial. Clin Nutr ESPEN. 2017. doi: https://doi.org/10.1016/j.clnesp.2017.11.005 [in press].	Not critically ill
14.	Tuncay P, Arpaci F, Doganay M, Erdem D, Sahna A, Ergun H, Atabey D. Use of standard enteral formula versus enteric formula with prebiotic content in nutrition therapy: A randomized controlled study among neuro-critical care patients. Clin Nutr ESPEN. 2018 Jun;25:26-36.	Pseudo randomized